Marine Physical Laboratory # Wave Breaking, Bubble Production and Channel Characterization of the Surf Zone Principal Investigator(s) Grant B. Deane Supported by the Office of Naval Research Grant Number: N00014-00-1-0303 Final Report August 2003 DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited University of California, San Diego Scripps Institution of Oceanography 20040809 097 | REPORT DOCUMENTATION PAGE | | | | Form Approved
OMB No 0704-0188 | |---|--|----------------------|--|--| | Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data need ed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information, long page and Reports 1215, lefterson | | | | | | 1. Agency Use Only (Leave B | Suite 1204, Allington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. | | | | | 4.Title and Subtitle. | | | | 5. Funding Numbes. | | Wave Breaking, Bubble Production and Channel Characterization of the Surf Zone | | | | N00014-00-1-0303 | | 6. Author(s). Grant B. Deane | | | | Project No.
Task No. | | 7. Performing Monitoring Agency Names(s) and Address(es). | | | | 8. Performing Organization | | University of California, San Diego Marine Physical Laboratory Scripps Institution of Oceanography 291 Rosecrans Street San Diego, CA 92106 | | | | Report Number. | | 9. Sponsoring/Monitoring Agency Name(s) and Address(es). Office of Naval Research Department of the Navy 800 North Quincy Street Arlington, VA 22217-5660 Atten: A. R. Benson, ONR 322OM | | | | 10. Sponsoring/Monitoring Agency
Report Number. | | 11. Supplementary Notes. | | | | | | 12a. Distribution/Availability S | Statement. | | | 12b. Distribution Code. | | Approved for public release; distribution is unlimited. | | | | | | 13. Abstract (Maximum 200 |) words). | | | | | The long-term goal of propagation through the caustics created by sho surf zone | ne surf zone. A seco | ondary goal w | as to see if high-inte | | | 14. Subject Terms. underwater acoustic communication, surf zone | | | | 15. Number of Pages.
4
16. Price Code. | | | | ——— | | | | 17. Security Classification of Report. Unclassified | Security Classification ofThisPage. Unclassified | on 19. Secu
of Ab | rity Classification
stract.
Unclassified | 20. Limitation of Abstract. None | ## The Effect of Wave-Induced Caustics on ACOMMS and Buried Objects: SIO Component Grant B. Deane Marine Physical Laboratory Scripps Institution of Oceanography, code 0238 La Jolla, CA 92093-0238 phone: (858) 534-0536 fax: (858) 534-7641 email: grant@mpl.ucsd.edu Award Number: N00014-00-1-0303 #### LONG-TERM GOALS The long-term goal of this research is to understand underwater acoustic communications propagation through the surf zone. A secondary goal was to see if high-intensity, transient sound caustics created by shoaling surf could be exploited to improve the detection of buried objects in the surf zone. #### **OBJECTIVES** The background to this work come from the surf zone acoustic channel characterization effort undertaken as part of the very shallow water/surf zone mine countermeasures program. Prior channel characterization work had identified the formation of high-energy sound focal regions caused by shoaling surf acting as surface gravity wave lenses. The caustics result in transient, high amplitude arrivals late in the time-varying impulse response arrival structure of the acoustic channel. The arrivals are of sufficient amplitude to disrupt successful communications in very shallow water, and one of the objectives of the present work is to obtain a full characterization of the phenomenon. A second objective was to determine if the surface-scattered, high-angle caustics could be exploited to improve target backscatter signal-to-noise ratio estimates and thus improve the ability to detect buried objects in the near shore environment. #### **APPROACH** A short-duration experiment (5 days) was planned to study acoustic channel properties in the surf zone just north of Scripps Pier in collaboration with Dr. James Preisig of the Woods Hole Oceanographic Institute. The experiment configuration consisted of a sound projector with a co-located reference hydrophone and two vertical arrays of hydrophones mounted at 90 m inshore and 90 m cross-shore of the source. The propagation paths were instrumented with 2 arrays of 10 pressure sensors spaced at 10 m intervals to measure the shoaling surface gravity wave field. An autonomous CTD was deployed at the source location to characterize the water salinity and temperature. In addition, an oil-filled, spherical target was supplied by Kerry Commander of CSS, Panama City, Florida to be used as a buried target. Monostatic acoustic arrivals were recorded both with and without the target to investigate the impact of sound focused by gravity waves on the detection of buried objects. The two primary acoustic transmission paths were oriented inshore and across-shore to permit characterization of the different focusing properties of the surface gravity wave field when scattering sound aligned with the direction of propagation versus along a wave crest. A wavefield code has been developed by Dr. Chris Tindle of Auckland University, New Zealand, to model propagation through the surf zone, including transient caustic behavior. To support this study, the approach adopted was to extend the model to handle a penetrable seafloor with variable bathymetry. #### WORK COMPLETED The experiment to characterize transmission through the surf zone was deployed and completed by January, 2002. Despite heavy surf complicating the deployment and destroying 2 pressure arrays, a complete data set of transmissions inshore and across-shore with environmental data were obtained. A series of transmissions with the spherical target buried at various ranges from the receiver array along the inshore propagation path were also taken. Segments of the data set have been analyzed to relate the instantaneous, time-varying sea surface with the observed formation of caustics in the sound field. Clear (and expected) differences were observed in the high intensity arrival structure between the inshore and cross-shore propagation paths. Overall, the effort to characterize caustics over 90 m length scales along inshore and cross-shore paths was successful. A complete set of transmissions were also taken along the inshore propagation path with a buried spherical target in place. An analysis of the forward scatter and backscatter data for these trials failed to reveal any significant advantage in using transient caustics to detect buried targets. Thus, the outcome of this component of the experiment was a negative result. The propagation model developed by Dr. Chris Tindle at the Auckland University Physics Department was modified to include the effects of a penetrable seafloor with variable bathymetry and multiple scattering effects at the sea surface. This model has subsequently been used to successfully model the arrival time, amplitude and phase of surface scattered acoustic wavefronts. #### RESULTS The first result from the surf zone channel characterization is that systematic differences can be observed in the arrival structure of high intensity sound scattered from shoaling surf in the along-shore and across-shore directions. These differences are consistent with the hypothesis that gravity wave lenses are the source of the focal regions, and can be explained by the gravity wave structure in the along-shore and across-shore directions. The second result is that we were unable to exploit the caustics to improve buried object detection. The third result comes from the analysis of previous field data supported by this program in collaboration with Kerry Commander and co-workers at the Coastal Systems Station, Panama City, Florida. The result relates acoustic channel availability in very shallow water/surf zone region to a single environmental parameter, which is the McCowan breaking criterion. The result is summarized in Figure 1. Figure 1. The figure, taken with permission from Commander et. al., shows symbol errors as a function of water depth and significant wave height. The solid line in the figure shows the significant wave height at which wave breaking begins for a given water depth, as established by the McCowan breaking criterion. The data show that communications errors increase in the region predicted by the McCowan breaking criterion. The symbol errors in Figure 1 were estimated from the measured surf zone channel properties by averaging the symbol errors produced by 125 simulations of a binary phase shift keyed receiver (Commander et. al.). The data show a clear increase in transmission errors in the vicinity of the McCowan breaking criterion. Shoaling waves in water depths roughly equal to or less than that determined by this criterion break, injecting large plumes of bubbles into the water column. The bubble clouds formed in this way absorb and scatter sound, effectively blocking the acoustic transmission path. This analysis demonstrates that the McCowan breaking criterion can be used as a first order predictor of the water depth at which acoustic communications will begin to fail for a given significant wave height. #### **IMPACT/APPLICATIONS** The main application is the potential use of the McCowan breaking criterion as a predictor of communications system performance as a function of water depth for a surface gravity wave field of known RMS wave height. #### RELATED PROJECTS This work is directly linked to the project "The Effect of Wave-Induced Caustics on ACOMMS and Buried Objects: WHOI Component" being run by Dr. James Preisig of the Woohs Hole Oceanographical Institution. Dr. Preisig and I are continuing to collobrate on the modeling and analysis of data taken from this program to understand and optimize underwater acoustic communications in the very near shore region and the surf zone. #### REFERENCES Kerry W. Commander, Robert J. McDonald, Grant. B. Deane, Dale Green, and John S. Stroud, "The effects of environmental variations in the shallow water acoustic channel," in preparation. #### **ONR/MPL REPORT DISTRIBUTION** Office of Naval Research (3) Department of the Navy Ballston Tower One 800 North Quincy Street Arlington, VA 22217-5660 Atten: A. R. Benson, ONR 3220M Regional Director (1) ONR Detachment San Diego Regional Office 4520 Executive Drive, Suite 300 San Diego, CA 92121-3019 Commanding Officer (1) Naval Research Laboratory 4555 Overlook Avenue, S.W. Attn: Code 2627 Washington, D.C. 20375-5320 Defense Technical Information Center (4) 8725 John J. Kingman Road Suite 0944 Ft. Belvoir, VA 22060-6218